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Abstract

The famous Tricomi equation was established in 1923, by F. G. Tricomi, who is the pioneer
of parabolic elliptic and hyperbolic boundary value problems and related problems of variable
type. In 1945, F. I. Frankl established a generalization of these problems for the well-known
Chaplygin equation. In 1953 and 1955, M. H. Protter generalized these problems even further.
In 1977, we generalized these results in several n-dimensional simply connected domains. In
1950-1951, M. A. Lavrentjev and A. V. Bitsadze investigated the Bitsadze - Lavrentjev equa-
tion. In 1990, we proposed the exterior Tricomi problem. In 2002, we considered uniqueness
of quasi-regular solutions for a bi-parabolic elliptic bi-hyperbolic Tricomi problem. In 2006,
G. C. Wen investigated the exterior Tricomi problem for general mixed type equations. In
2011, we established the exterior Tricomi and Frankl problems for quaterelliptic - quaterhyper-
bolic equations. In 2014, D. Amanov and J. M. Rassias investigated boundary value problems
for the higher order generalized mixed-parabolic equation. In this paper we investigate the
exterior Bitsadze-Lavrentjev problem for quaterelliptic -quaterhyperbolic Bitsadze-Lavrentjev
PDEquations with eight parabolic lines in a doubly connected domain and propose open prob-
lems. These problems are of vital importance in fluid mechanics.
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1 Introduction

In 1904, S. A. Chaplygin [11] pointed out that the nonlinear equation of an adiabatic potential
perfect gas :

(ρ2α2 − ψ2
y)ψxx + 2ψxψyψxy + (ρ2α2 − ψ2

x)ψyy = 0,

is closely connected with the study of the linear mixed type equation

K(y)uxx + uyy = 0,

named Chaplygin equation , where ψ = ψ(x, y) is the stream function, α =local velocity of sound
and ρ =density of gas.
In 1923, F. G. Tricomi [19] initiated the work on boundary value problems for linear partial differ-
ential mixed type equations of second order and related equations of variable type. The well-known
mixed type partial differential equation is called Tricomi equation :

yuxx + uyy = 0,

Tbilisi Mathematical Journal 7(2) (2014), pp. 111–136.
Tbilisi Centre for Mathematical Sciences.

Received by the editors: 07 November 2014.
Accepted for publication: 02 December 2014.

Unauthenticated
Download Date | 2/27/18 1:20 PM

khvicha
Typewritten Text
DOI  10.2478/tmj-2014-0022



112 J. M. Rassias

after F. G. Tricomi ,who introduced this equation, for functions u = u(x, y) in a real (x, y)-region.
It plays a central role in the mathematical analysis of the transonic flows, as it is of elliptic and
hyperbolic type, where the coefficient y of the second order partial derivative of the involved function
u = u(x, y) with respect to x, changes sign. Besides this equation is of parabolic type, where y
vanishes. In 1945, F. I. Frankl [3] drew attention to the fact that the Tricomi problem was closely
connected to the study of gas flow with nearly sonic speeds. In 1953 and 1955, M. H. Protter
[7] generalized and improved the afore-mentioned results in the euclidean plane. In 1977, we [8]
generalized these results in Rn, (n > 2). In 1950-1951, M. A. Lavrentjev and A. V. Bitsadze
([29]-[30]) investigated the famous Bitsadze-Lavrentjev equation:

sgn(y)uxx + uyy = 0,

where
sgn(y) = 1, y > 0; = 0, y = 0; = −1, y < 0.

In 1982, we [9] established a maximum principle of the Cauchy problem for hyperbolic equations in
Rn+1, (n ≥ 2). In 1983, we [10] solved the Tricomi problem with two parabolic lines of degeneracy
and, in 1992, we [12] established the well-posedness of the Tricomi problem in euclidean regions.
Interesting results for the Tricomi problem were achieved by G. Baranchev [1] in 1986, and M.
Kracht and E. Kreyszig [4] in 1986, as well. Related information was reported by G. Fichera [2] in
1985, and E. Kreyszig ([5]-[6]) in 1989 and 1994. Our ([11], [14]-[15]) work, in 1990 and 1999, was
in similar areas of mixed type equations. In 1990-2009, G. C. Wen et al. ([17], [20]-[28], [31]) have
applied the complex analytic method and achieved fundamental uniqueness and existence results
for solutions of the Tricomi and Frankl problems for the classical mixed type partial differential
equations with boundary conditions. In 1993, R.I. Semerdjieva [18] introduced the hyperbolic
equation

K1(y)uxx + (K2(y)uy)y + ru = f,

in the lower half-plane. In 1997, we [13] considered the more general case of the above hyperbolic
equation, so that it was elliptic in the upper half-plane and parabolic on the line y = 0. In 2002,
we [16] considered the more general Tricomi problem with partial differential equation the new
bi-parabolic elliptic bi-hyperbolic equation

Lu = K1(y) (M2(x)ux)x +M1(x) (K2(y)uy)y + r(x, y)u = f(x, y), (1.1)

which is parabolic on both segments x = 0, 0 < y ≤ 1; y = 0, 0 < x ≤ 1, elliptic in the euclidean
region Ge =

{
(x, y) ∈ G(⊂ R2) : x > 0, y > 0

}
and hyperbolic in both regions

Gh1
=
{

(x, y) ∈ G(⊂ R2) : x > 0, y < 0
}

;Gh2
=
{

(x, y) ∈ G(⊂ R2) : x < 0, y > 0
}
,

withG the mixed domain of (1.1). In 1999, we [15] proved existence of weak solutions for a particular
Tricomi problem. Then we established uniqueness of quasi-regular solutions ( [8], [10]-[13], [16]) for
the Tricomi problem. In 2011, we ([32]-[33]) established the uniqueness of quasi-regular solutions
for the exterior Tricomi and Frankl problems. In this paper we investigate the exterior Bitsadze-
Lavrentjev problem for general Bitsadze-Lavrentjev quaterelliptic and quaterhyperbolic equations:

Lu = sgn (y(y − 1) |k(y)|)uxx + sgn (x(x+ 1) |m(x)|)uyy + r(x, y)u = f(x, y), (1.2)
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k = k(y) 6= 0;m = m(x) 6= 0,

everywhere in D, with eight parabolic lines of degeneracy in a doubly connected mixed domain
and establish uniqueness of quasi-regular solutions. Also we propose new open problems. These
results are interesting in Aerodynamics and Hydrodynamics. The Mixed type partial differential
equations are encountered in the theory of transonic flow and they give rise to special boundary value
problems, called the Tricomi and Frankl as well as Bitsadze-Lavrentjev problems. The Transonic
flows involve a transition from the subsonic to the supersonic region through the sonic.

Definition 1.1. The Bitsadze-Lavrentjev problem or Problem BL consists of finding a function u
which satisfies the afore-mentioned Bitsadze-Lavrentjev equation (1.2) in a mixed domain D :
a simply connected and bounded (x, y)-region by a rectifiable Jordan (non-self-intersecting) elliptic
arc σ (for y > 0) with endpoints O = (0, 0) and A = (1, 0) and by two hyperbolic characteristics
Γ, γ of the Bitsadze-Lavrentjev equation satisfying the pertinent characteristic equation such that
these characteristics Γ, γ meet at a point P (for y < 0) with Γ emanating from A = (1, 0) and γ
from O = (0, 0),

Γ : y = x− 1 and γ : y = −x,
and u assumes prescribed continuous boundary values on both arcs σ and γ. The portion of D
lying in the upper half-plane, above the x − axis, is the elliptic region; portion of D lying in the
lower half-plane, below the x− axis, is the hyperbolic region; and the segment OA is parabolic.

Definition 1.2. A function u = u(x, y) is regular solution of Problem BL if:

1. u is continuous in the closure of D which is the union of D with its boundary consisting of
the three curves σ,Γ, γ;

2. The first order partial derivatives of u are continuous in the closure of D except points O,A,
where they may have poles of order less than 2/3;

3. The second order partial derivatives of u are continuous in D except possibly on OA where
they may not exist;

4. u satisfies Bitsadze-Lavrentjev equation at all points of D except OA;

5. u assumes prescribed continuous boundary values on both arcs σ, γ;

2 Exterior Bitsadze-Lavrentjev problem: Tricomi Case

Consider the general Bitsadze-Lavrentjev quaterelliptic - quaterhyperbolic equation (1.2) with eight
parabolic lines of degeneracy in a bounded doubly connected mixed domain D with a piecewise
smooth boundary ∂D, where f = f(x, y) is continuous in D, r = r(x, y) is once-continuously
differentiable in D, K = K(y) := sgn(y(y − 1)|k(y)|) is discontinuous for y ∈ [−k1, k2] with
−k1 = inf {y : (x, y) ∈ D} and k2 = sup {y : (x, y) ∈ D} , and M = M(x) := sgn(x(x + 1)|m(x)|)
is discontinuous for x ∈ [−m1,m2] with −m1 = inf {x : (x, y) ∈ D} and m2 = sup {x : (x, y) ∈ D} ,
so that k = k(y) 6= 0; m = m(x) 6= 0 everywhere in D. Besides

K =

 +1 for {y < 0} ∪ {y > 1}
0 for {y = 0} ∪ {y = 1}
−1 for {0 < y < 1}

; M =

 +1 for {x < −1} ∪ {x > 0}
0 for {x = 0} ∪ {x = −1}
−1 for {−1 < x < 0}

.
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Figure 1. (Figure for Bitsadze-Lavrentjev problem: Tricomi case)
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The boundary ∂D = Ext(D)∪Int(D) of the doubly connected domain D is formed by the following
two exterior and interior boundaries

Ext(D) = (Γ0 ∪ Γ′0 ∪ Γ′′0 ∪ Γ′′′0 ) ∪ (Γ2 ∪ Γ′2) ∪ (γ2 ∪ γ′2) ∪ (∆1 ∪∆′1) ∪ (δ1 ∪ δ′1),

Int(D) = (Γ1 ∪ Γ′1) ∪ (γ1 ∪ γ′1) ∪ (∆2 ∪∆′2) ∪ (δ2 ∪ δ′2) :

the interior boundary of D, which is the boundary of the square:

P1Q1P
′
2Q
′
2 = P1O1Q1O

′
1P
′
2O
′
2Q
′
2O2P1,

respectively: In the right hyperbolic domain G2 = {(x, y) ∈ D : 0 < x < 2, 0 < y < 1} with bound-
ary ∂G2 = (O1B1) ∪ (O2B2) ∪ (Γ1 ∪ Γ′1) ∪ (Γ2 ∪ Γ′2), where O1B1, O2B2 are two parabolic lines
with end points O1 = (0, 1), B1 = (2, 1) and O2 = (0, 0), B2 = (2, 0) and Γ1,Γ

′
1,Γ2,Γ

′
2 are four

characteristics with end points: O1, B1, O2, B2;P1 =
(

1
2 ,

1
2

)
, P2 =

(
3
2 ,

1
2

)
, so that:

Γ1 = (O1P1) :

x∫
0

√
M(t)dt = −

y∫
1

√
−K(t)dt or y = −x+ 1,

Γ′1 = (P1O2) :

x∫
0

√
M(t)dt =

y∫
0

√
−K(t)dt or y = x,

Γ2 = (P2B1) :

x∫
2

√
M(t)dt =

y∫
1

√
−K(t)dt or y = x− 1,

Γ′2 = (B2P2) :

x∫
2

√
M(t)dt = −

y∫
0

√
−K(t)dt or y = −x+ 2,

where K = −1;M = 1, such that on the characteristics: H = −(dy)2 + (dx)2 = 0. In the upper
hyperbolic domain G′2 = {(x, y) ∈ D : −1 < x < 0, 1 < y < 3} with boundary ∂G′2 = (O1Z1) ∪
(O′1E1) ∪ (γ1 ∪ γ′1) ∪ (γ2 ∪ γ′2), where O1Z1, O

′
1E1 are two parabolic lines with end points O1 =

(0, 1), Z1 = (0, 3) and O′1 = (−1, 1), E1 = (−1, 3) and γ1, γ
′
1, γ2, γ

′
2 are four characteristics with end

points: O1, Z1, O
′
1, E1;Q1 =

(−1
2 ,

3
2

)
, Q2 =

(−1
2 ,

5
2

)
, so that:

γ1 = (Q1O1) :

x∫
0

√
−M(t)dt = −

y∫
1

√
K(t)dt or y = −x+ 1, γ1 is the extension of Γ1,

γ′1 = (O′1Q1) :

x∫
−1

√
−M(t)dt =

y∫
1

√
K(t)dt : or y = x+ 2,

γ2 = (Z1Q2) :

x∫
0

√
−M(t)dt =

y∫
3

√
K(t)dt : or y = x+ 3,
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γ′2 = (Q2E1) :

x∫
−1

√
−M(t)dt = −

y∫
3

√
K(t)dt or y = −x+ 2,

where K = 1;M = −1, such that on the characteristics: −H = (dy)2 − (dx)2 = 0. In the left
hyperbolic domain G′′2 = {(x, y) ∈ D : −3 < x < −1, 0 < y < 1} with boundary ∂G′′2 = (O′1A1) ∪
(O′2A2) ∪ (∆1 ∪∆′1) ∪ (∆2 ∪∆′2), where O′1A1, O

′
2A2 are two parabolic lines with end points O′1 =

(−1, 1), A1 = (−3, 1) and O′2 = (−1, 0), A2 = (−3, 0) and ∆1,∆
′
1,∆2,∆

′
2 are four characteristics

with end points: O′1, A1, O
′
2, A2;P ′1 =

(−5
2 ,

1
2

)
, P ′2 =

(−3
2 ,

1
2

)
, so that:

∆1 = (A1P
′
1) :

x∫
−3

√
M(t)dt = −

y∫
1

√
−K(t)dt or y = −x− 2,

∆′1 = (P ′1A2) :

x∫
−3

√
M(t)dt =

y∫
0

√
−K(t)dt or y = x+ 3, ∆′1 and γ2 lie on A2Z1,

∆2 = (P ′2O
′
1) :

x∫
−1

√
M(t)dt =

y∫
1

√
−K(t)dt or y = x+ 2, ∆2 is an extension of γ

′
1,

∆′2 = (O′2P
′
2) :

x∫
−1

√
M(t)dt = −

y∫
0

√
−K(t)dt or y = −x− 1,

where K = −1;M = 1, such that on the characteristics: H = −(dy)2 + (dx)2 = 0. In the lower
hyperbolic domain G′′′2 = {(x, y) ∈ D : −1 < x < 0,−2 < y < 0} with boundary ∂G′′′2 = (O2Z2) ∪
(O′2E2) ∪ (δ1 ∪ δ′1) ∪ (δ2 ∪ δ′2), where O2Z2, O

′
2E2 are two parabolic lines with end points O2 =

(0, 0), Z2 = (0,−2) and O′2 = (−1, 0), E2 = (−1,−2) and δ1, δ
′
1, δ2, δ

′
2 are four characteristics with

end points: O2, O
′
2, E2, Z2;Q′1 =

(−1
2 ,
−3
2

)
, Q′2 =

(−1
2 ,
−1
2

)
, so that:

δ1 = (Q′1Z2) :

x∫
0

√
−M(t)dt = −

y∫
−2

√
K(t)dt or y = −x− 2, δ1 and ∆1 lie on A1Z2,

δ′1 = (E2Q
′
1) :

x∫
−1

√
−M(t)dt =

y∫
−2

√
K(t)dt or y = x− 1, δ′1 and Γ2 lie on B1E2,

δ2 = (O2Q
′
2) :

x∫
0

√
−M(t)dt =

y∫
0

√
K(t)dt or y = x, δ2 is an extension of Γ′1,

δ′2 = (Q′2O
′
2) :

x∫
−1

√
−M(t)dt = −

y∫
0

√
K(t)dt or y = −x− 1, δ′2 is an extension of Γ′1,
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where K = 1;M = −1, such that on the characteristics: −H = (dy)2 − (dx)2 = 0. Note that
K = M = −1, in the interior of the square P1Q1P

′
2Q
′
2, which contains no part of the mixed domain

D.
In the upper right elliptic domain G1 = {(x, y) ∈ D : x > 0, y > 1} with boundary ∂G1 =

(O1B1)∪ (O1Z1)∪Γ0, where O1B1, O1Z1 are two parabolic lines with end points O1 = (0, 1), B1 =
(2, 1) and O1 = (0, 1), Z1 = (0, 3) and Γ0 is the upper right elliptic arc connecting points B1 =
(2, 1), Z1 = (0, 3).
In the lower right elliptic domain G′1 = {(x, y) ∈ D : x > 0, y < 0} with boundary ∂G′1 = (O2B2)∪
(O2Z2)∪Γ′0, where O2B2, O2Z2 are two parabolic lines with end points O2 = (0, 0), B2 = (2, 0) and
O2 = (0, 0), Z2 = (0,−2) and Γ′0 is the lower right elliptic arc connecting points B2 = (2, 0), Z2 =
(0,−2).
In the upper left elliptic domain G′′1 = {(x, y) ∈ D : x < −1, y > 1} with boundary ∂G′′1 = (O′1E1)∪
(O′1A1)∪Γ′′0 , where O′1E1, O

′
1A1 are two parabolic lines with end points O′1 = (−1, 1), E1 = (−1, 3)

and O′1 = (−1, 1), A1 = (−3, 1) and Γ′′0 is the upper left elliptic arc connecting points A1 = (−3, 1)
and E1 = (−1, 3).
In the lower left elliptic domain G′′′1 = {(x, y) ∈ D : x < −1, y < 0} with boundary ∂G′′′1 = (O′2A2)∪
(O′2E2)∪Γ′′′0 , where O′2E2, O

′
2A2 are two parabolic lines with end points O′2 = (−1, 0), E2 = (−1,−2)

and O′2 = (−1, 0), A2 = (−3, 0) and Γ′′′0 is the lower left elliptic arc connecting points A2 = (−3, 0)
and E2 = (−1,−2). Let us consider the intersection points of the hyperbolic characteristics:
Γ1 ∩ Γ′1 = {P1} , where P1 =

(
1
2 ,

1
2

)
; Γ2 ∩ Γ′2 = {P2} , where P2 =

(
3
2 ,

1
2

)
;

∆1 ∩∆′1 = {P ′1} , where P ′1 =
(−5

2 ,
1
2

)
; ∆2 ∩∆′2 = {P ′2} , where P ′2 =

(−3
2 ,

1
2

)
;

γ1 ∩ γ′1 = {Q1} , where Q1 =
(−1

2 ,
3
2

)
; γ2 ∩ γ′2 = {Q2} , where Q2 =

(−1
2 ,

5
2

)
;

δ1 ∩ δ′1 = {Q′1} , where Q′1 =
(−1

2 ,
−3
2

)
; δ2 ∩ δ′2 = {Q′2} , where Q′2 =

(−1
2 ,
−1
2

)
.

Note that:

1. The boundary ∂D is assumed to be a piecewise continuously differentiable arc. The elliptic
arcs are ”star-shaped” (counterclockwise).

2. We consider continuous solutions u of the quaterelliptic -quaterhyperbolic equation (*) with
eight parabolic lines, which have the property that ux , uy are continuous in the closure
D̄ = D ∪ ∂D.

These continuity conditions may be weakened at the eight ”singular” points
A1, A2, B1, B2, O1, O2, O

′
1, O

′
2, by considering ux , uy continuous on the boundary ∂D except at

these points.By ”quaterelliptic” and ”quaterhyperbolic” we mean that Bitsadze-Lavrentjev equation
(1.2) is elliptic in four different subdomains and hyperbolic in four other ”symmetric” subdomains
of the whole domain D.

In fact, equation (1.2) is elliptic and hyperbolic in G1 ∪G′1 ∪G′′1 ∪G′′′1 and G2 ∪G′2 ∪G′′2 ∪G′′′2 ,
respectively.

Definition 2.1. A function u = u(x, y) is a quasi-regular solution ([7], [8], [10]-[16]) of Problem
(BL) if

i) u ∈ C2 (D) ∩ C
(
D
)
, D = D ∪ ∂D ;
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ii) the Green’s theorem (of the integral calculus) is applicable to the integrals∫∫
D

uxLudxdy,

∫∫
D

uyLudxdy ;

iii) the boundary and region integrals, which arise, exist; and

iv) u satisfies the Bitsadze-Lavrentjev equation (1.2) in D and the following boundary condition
on the exterior boundary Ext(D) :

u =



ϕ1 (s) on Γ0 ; ϕ2 (s) on Γ′0
ϕ3 (s) on Γ′′0 ; ϕ4 (s) on Γ′′′0
ψ1 (x) on Γ2 ; ψ2 (x) on Γ′2
ψ3 (x) on γ2 ; ψ4 (x) on γ′2
ψ5 (x) on ∆1 ; ψ6 (x) on ∆′1
ψ7 (x) on δ1 ; ψ8 (x) on δ′1

, (2.1)

with continuous prescribed values.

The exterior Bitsadze-Lavrentjev problem: Tricomi Case or Problem (BL-T):

consists of finding a solution u of the quaterelliptic -quaterhyperbolic equation (1.2) with eight
parabolic lines in D and which assumes continuous prescribed values (2.1).

Theorem 2.2. (UNIQUENESS THEOREM): Consider the general Bitsadze-Lavrentjev quaterel-
liptic - quaterhyperbolic equation (1.2) with eight parabolic lines and the boundary condition (2.1).
Assume the above mixed doubly connected domain D and the following conditions:
(R1) r ≤ 0 on Int(D) = (Γ1 ∪ Γ′1) ∪ (γ1 ∪ γ′1) ∪ (∆2 ∪∆′2) ∪ (δ2 ∪ δ′2) ,

(R2)

{
xdy − (y − 1) dx ≥ 0 on Γ0 ; xdy − ydx ≥ 0 on Γ′0

(x+ 1) dy − (y − 1) dx ≥ 0 on Γ′′0 ; (x+ 1) dy − ydx ≥ 0 on Γ′′′0
,

(R3)


2r + xrx + (y − 1) ry ≤ 0 in G1 ; r + xrx ≤ 0 in G2

2r + xrx + yry ≤ 0 in G′1 ; r + (y − 1) ry ≤ 0 in G′2
2r + (x+ 1) rx + (y − 1) ry ≤ 0 in G′′1 ; r + (x+ 1) rx ≤ 0 in G′′2

2r + (x+ 1) rx + yry ≤ 0 in G′′′1 ; r + yry ≤ 0 in G′′′2

,

(R4) K = M = +1 , in G1 ∪G′1 ∪G′′1 ∪G′′′1 ,

(R5)

{
K = −1 , M = +1 in G2 ∪G′′2
K = +1 , M = −1 in G′2 ∪G′′′2

.

Let ()x = ∂ ()/∂x, ()
•

= d ()/dx, ()y = ∂ ()/∂y, ()
′

= d ()/dy,
where f = f(x, y) is continuous in D, r = r(x, y) is once-continuously differentiable in D, K =
K(y)) := sgn(y(y− 1)|k(y)|) is a discontinuous function of y, for y ∈ [−k1, k2], with −k1 = inf{y :
(x, y) ∈ D} and k2 = sup{y : (x, y) ∈ D}, and M = M(x) := sgn(x(x+ 1)|m(x)|) is discontinuous
for x ∈ [−m1,m2] with −m1 = inf{x : (x, y) ∈ D} and m2 = sup{x : (x, y) ∈ D}, such that
k = k(y) 6= 0 ; m = m(x) 6= 0,everywhere in D, as well as

K =

 +1 for {y < 0} ∪ {y > 1}
0 for {y = 0} ∪ {y = 1}
−1 for {0 < y < 1}

; M =

 +1 for {x < −1} ∪ {x > 0}
0 for {x = 0} ∪ {x = −1}
−1 for {−1 < x < 0}

.

Then Problem (BL-T) has at most one quasi-regular solution in D.
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Proof. We apply the well-known a − b − c energy integral method with a = 0, and use the above
Bitsadze-Lavrentjev equation (1.2) and the boundary condition (2.1).
First, we assume two quasi-regular solutions u1, u2 of Problem (BL-T). Then we claim that u =
u1 − u2 = 0 holds in the domain D. In fact, we investigate

0 = J = 2 〈lu, Lu〉0 =

∫∫
D

2luLudxdy, (2.2)

where lu = b (x)ux + c (y)uy, and Lu = L(u1 − u2) = Lu1 − Lu2 = f − f = 0 in D,
with choices

b = b (x) =

 x in G1 ∪G′1 ∪G2

x+ 1 in G′′1 ∪G′′′1 ∪G′′2
0 in G′2 ∪G′′′2

, c = c (y) =

 y in G′1 ∪G′′′1 ∪G′′′2
y − 1 in G1 ∪G′′1 ∪G′2

0 in G2 ∪G′′2
. (2.3)

We consider the new differential identities

2buxuxx =
(
bu2
x

)
x
− (b)

•
u2
x; 2buxuyy = (2buxuy)y −

(
bu2
y

)
x

+ (b)
•
u2
y,

2cuyuxx = (2cuxuy)x −
(
cu2
x

)
y

+ (c)
′
u2
x; 2cuyuyy =

(
cu2
y

)
y
− (c)

′
u2
y,

2bruux =
(
bru2

)
x
− (br)x u

2; 2cruuy =
(
cru2

)
y
− (cr)y u

2.

Employing these identities and the classical Green’s theorem of the integral calculus separately in
Gji (i = 1, 2; j = 0, 1, 2, 3), due to the discontinuity of K,M, we obtain from (1.2), (2.2)-(2.3) that

0 = JGji
= IGji

+ I∂Gji
=

∫
Gji

2 [bux + cuy] [K(y)uxx +M(x)uyy + ru] dxdy, (2.4)

where, if we denote:

G1 = G0
1, G

′
1 = G1

1, G
′′
1 = G2

1, G
′′′
1 = G3

1 ; G2 = G0
2, G

′
2 = G1

2, G
′′
2 = G2

2, G
′′′
2 = G3

2 ,

then

IGji
=

∫
Gji

Q (ux, uy) dxdy =

∫
Gji

(
Au2

x +Bu2
y + Γu2 + 2∆uxuy

)
dxdy;

I∂Gji
=

∫
∂Gji

Q̃ (ux, uy)ds =

∫
∂Gji

(
Ãu2

x + B̃u2
y + Γ̃u2 + 2∆̃uxuy

)
ds,

with
Q = Q (ux, uy) = Au2

x +Bu2
y + Γu2 + 2∆uxuy,

where
A =

[
K
(
−ḃ+ c′

)]
, B = M

[
ḃ− c′

]
, Γ = −

[
(br)x + (cr)y

]
, ∆ = 0,
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in Gji , and
Q̃ = Q̃ (ux, uy) = Ãu2

x + B̃u2
y + Γ̃u2 + 2∆̃uxuy,

where

Ã = (bv1 − cv2)K, B̃ = (−bv1 + cv2)M, Γ̃ = (bv1 + cv2) r,∆̃ = bMv2 + cKv1,

on ∂Gji , where v = (v1, v2) = (dy/ds,−dx/ds) is the outer unit normal vector on the boundary

∂Gji , of the domain Gji , with 0 < ds =
√

(dx)2 + (dy)2, |ν| = 1, and∫∫
Gji

()x dxdy =

∫
∂Gji

() v1ds,

∫∫
Gji

()y dxdy =

∫
∂Gji

() v2ds,

are the Green’s integral formulas.
From the above conditions of the uniqueness theorem 2.2, we obtain

A = B =

{
1 in G2 ∪G′2 ∪G′′2 ∪G′′′2
0 in G1 ∪G′1 ∪G′′1 ∪G′′′1

.

Also

0 ≤ Γ =


− (2r + xrx + (y − 1) ry) in G1

− (2r + xrx + yry) in G′1
− (2r + (x+ 1) rx + (y − 1) ry) in G′′1
− (2r + (x+ 1) rx + yry) in G′′′1

; =


− (r + xrx) in G2

− (r + (y − 1) ry) in G′2
− (r + (x+ 1) rx) in G′′2
− (r + yry) in G′′′2

.

We note:

1. In the upper right elliptic region Ḡ1 = G1 ∪ ∂G1 : 0 = JG1
= IG1

+ I∂G1
:

IG1
= −

∫∫
G1

(2r + xrx + (y − 1) ry)u2dxdy ≥ 0;

I∂G1
=

∫
Γ0

(xν1 + (y − 1) ν2)
(
ν2

1 + ν2
2

)
N2ds

+ 2

∫
Z1O1

(y − 1) ν1uxuyds+ 2

∫
O1B1

xν2uxuyds ;

u|Γ0 = 0 yields ux = Nν1 ; uy = Nν2, N = normalizing factor , implying:

Q0 = Q0 (ux, uy) : = (xν1 − (y − 1) ν2)u2
x + (−xν1 + (y − 1) ν2)u2

y

+2 (xν2 + (y − 1) ν1)uxuy = (xν1 + (y − 1) ν2)
(
ν2

1 + ν2
2

)
N2 > 0

.

Note that K = M = 1 and b = x, c = y − 1 in G1, as well as u = 0 on Γ0.
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2. In the right hyperbolic region Ḡ2 = G2 ∪ ∂G2 : 0 = JG2 = IG2 + I∂G2 :

IG2 =

∫∫
G2

[
u2
x + u2

y − (r + xrx)u2
]
dxdy ≥ 0;

I∂G2 =

∫
Γ1

x
[
(ux − uy)

2 − ru2
]
dx+

∫
Γ′
1

(−x)
[
(ux + uy)

2 − ru2
]
dx

+ 2

∫
B1O1

xν2uxuyds+ 2

∫
O2B2

xν2uxuyds;

as

IΓ1
=

∫
Γ1

x
[
−ν1

(
u2
x + u2

y

)
+ 2ν2uxuy + ν1ru

2
]
ds

= −
∫
Γ1

x
[(
u2
x + u2

y

)
dy + 2uxuydx− ru2dy

]
=

∫
Γ1

x
[
(ux − uy)

2 − ru2
]
dx ≥ 0,

where on Γ1 : y = −x+ 1, or dy = −dx : ν1 = ν2, and xdx|Γ1
= −xν2ds|Γ1

> 0, as well as

IΓ′
1

=

∫
Γ′
1

x
[
−ν1

(
u2
x + u2

y

)
+ 2ν2uxuy + ν1ru

2
]
ds

= −
∫
Γ′
1

x
[(
u2
x + u2

y

)
dy + 2uxuydx− ru2dy

]
=

∫
Γ′
1

(−x)
[
(ux + uy)

2 − ru2
]
dx ≥ 0,

where on Γ′1 : y = x, or dy = dx : ν1 = −ν2, and (−x) dx|Γ′
1

= xν2ds|Γ′
1
> 0, as well as

IΓ2
=

∫
Γ2

(−x)
[
(ux + uy)

2 − ru2
]
dx = 0;

and

IΓ′
2

=

∫
Γ′
2

x
[
(ux − uy)

2 − ru2
]
dx = 0 :

u|Γ2∪Γ′
2

= 0 yields ux = Nν1 ; uy = Nν2, N = normalizing factor, implying: (ux + uy) |Γ2 =

[(ν1 + ν2)N ] |Γ2
=
[(

dy−dx
ds

)
N
]
|Γ2

= 0, as on Γ2 : y = x − 1, or dy = dx, and
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(ux − uy) |Γ′
2

= [(ν1 − ν2)N ] |Γ′
2

=
[(

dy+dx
ds

)
N
]
|Γ′

2
= 0, as on Γ′2 : y = −x + 2, or dy =

−dx; IO1B1
+ IB1O1

= 0, because ν2|O1B1
= −ν2|B1O1

.
Note that K = −1, M = 1 and b = x, c = 0 in G2, as well as u = 0 on Γ2 ∪ Γ′2.

3. In the lower right elliptic region Ḡ′1 = G′1 ∪ ∂G′1 : 0 = JG′
1

= IG′
1

+ I∂G′
1

:

IG′
1

= −
∫∫
G′

1

(2r + xrx + yry)u2dxdy ≥ 0;

I∂G′
1

=

∫
Γ′
0

(xν1 + yν2)
(
ν2

1 + ν2
2

)
N2ds+ 2

∫
B2O2

xν2uxuyds+ 2

∫
O2Z2

yν1uxuyds ;

u|Γ′
0

= 0 yields ux = Nν1 ; uy = Nν2, N = normalizing factor, implying:

Q1 = Q1 (ux, uy) :

= (xν1 − yν2)
(
u2
x − u2

y

)
+ 2 (xν2 + yν1)uxuy

= (xν1 + yν2)
(
ν2

1 + ν2
2

)
N2 > 0;

IO2B2 + IB2O2 = 0, because ν2|O2B2 = −ν2|B2O2 . Note that K = M = 1 and b = x, c = y in
G1, as well as u = 0 on Γ′0.

4. In the upper hyperbolic region Ḡ′2 = G′2 ∪ ∂G′2 : 0 = JG′
2

= IG′
2

+ I∂G′
2

:

IG′
2

=

∫∫
G′

2

[
u2
x + u2

y − (r + (y − 1) ry)u2
]
dxdy ≥ 0;

I∂G′
2

=

∫
γ1

(y − 1)
[
(ux − uy)

2 − ru2
]
dx+

∫
γ′
1

(y − 1)
[
(ux + uy)

2 − ru2
]
dx

+ 2

∫
O1Z1

(y − 1)ν1uxuyds+ 2

∫
E1O′

1

(y − 1)ν1uxuyds ;

as

Iγ1 =

∫
γ1

(y − 1)
[
−ν2

(
u2
x + u2

y

)
+ 2ν1uxuy + ν2ru

2
]
ds

=

∫
γ1

(y − 1)
[(
u2
x + u2

y

)
dx+ 2uxuydy − ru2dx

]
=

∫
γ1

(y − 1)
[
(ux − uy)

2 − ru2
]
dx ≥ 0,
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where on γ1 (: extension of Γ1) : y = −x+ 1, or dy = −dx : ν1 = ν2, and (y − 1) dx|γ1 =
− (y − 1) ν2ds|γ1 > 0, as well as

Iγ′
1

=

∫
γ′
1

(y − 1)
[
−ν2

(
u2
x + u2

y

)
+ 2ν1uxuy + ν2ru

2
]
ds

=

∫
γ′
1

(y − 1)
[(
u2
x + u2

y

)
dx+ 2uxuydy − ru2dx

]
=

∫
γ′
1

(y − 1)
[
(ux + uy)

2 − ru2
]
dx ≥ 0,

where on γ′1 : y = x+ 2, or dy = dx : ν1 = −ν2, and (y − 1) dx|γ′
1

= − (y − 1) ν2ds|γ′
1
> 0,

as well as

Iγ2 =

∫
γ2

(y − 1)
[
(ux + uy)

2 − ru2
]
dx = 0;

and

Iγ′
2

=

∫
γ′
2

(y − 1)
[
(ux − uy)

2 − ru2
]
dx = 0 :

u|γ2∪γ′
2

= 0 yields ux = Nν1 ; uy = Nν2, N = normalizing factor implying: (ux + uy) |γ2 =

[(ν1 + ν2)N ] |γ2 =
[(

dy−dx
ds

)
N
]
|γ2 = 0, as on γ2 : y = x+3, or dy = dx, and (ux − uy) |γ′

2
=

[(ν1 − ν2)N ] |γ′
2

=
[(

dy+dx
ds

)
N
]
|γ′

2
= 0, as on γ′2 : y = −x+2, or dy = −dx; IZ1O1+IO1Z1 =

0, because ν2|Z1O1
= −ν2|O1Z1

. Note that K = 1, M = −1 and b = 0, c = y − 1 in G′2, as
well as u = 0 on γ2 ∪ γ′2.

5. In the upper left elliptic region Ḡ′′1 = G′′1 ∪ ∂G′′1 : 0 = JG′′
1

= IG′′
1

+ I∂G′′
1

:

IG′′
1

= −
∫∫
G′′

1

(2r + (x+ 1) rx + (y − 1) ry)u2dxdy ≥ 0;

I∂G′′
1

=

∫
Γ′′
0

((x+ 1) ν1 + (y − 1) ν2)
(
ν2

1 + ν2
2

)
N2ds

+ 2

∫
A1O′

1

(x+ 1) ν2uxuyds+ 2

∫
O′

1E1

(y − 1) ν1uxuyds;

u|Γ′′
0

= 0 yields relations
ux = Nν1 ; uy = Nν2,

N = normalizing factor, implying:

Q2 = Q2 (ux, uy) : = ((x+ 1) ν1 − (y − 1) ν2)
(
u2
x − u2

y

)
+ 2 ((x+ 1) ν2 + (y − 1) ν1)uxuy

= ((x+ 1) ν1 + (y − 1) ν2)
(
ν2

1 + ν2
2

)
N2 > 0;
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IE1O′
1

+ IO′
1E1

= 0, because ν1|E1O′
1

= −ν1|O′
1E1

. IO2B2
+ IB2O2

= 0, because ν2|O2B2
=

−ν2|B2O2
. Note that K = M = 1 and b = x+ 1, c = y − 1 in G′′1 , as well as u = 0 on Γ′′0 .

6. In the left hyperbolic region: Ḡ′′2 = G′′2 ∪ ∂G′′2 : 0 = JG′′
2

= IG′′
2

+ I∂G′′
2

:

IG′′
2

=

∫∫
G′′

2

[
u2
x + u2

y − (r + (x+ 1) rx)u2
]
dxdy ≥ 0;

I∂G′′
2

=

∫
∆′

2

(x+ 1)
[
(ux − uy)

2 − ru2
]
dx+

∫
∆2

(− (x+ 1))
[
(ux + uy)

2 − ru2
]
dx

+ 2

∫
O′

1A1

(x+ 1) ν2uxuyds+ 2

∫
A2O′

2

(x+ 1) ν2uxuyds;

as

I∆2 =

∫
Γ1

(x+ 1)
[
−ν1

(
u2
x + u2

y

)
+ 2ν2uxuy + ν1ru

2
]
ds

= −
∫

∆2

(x+ 1)
[(
u2
x + u2

y

)
dy + 2uxuydx− ru2dy

]
= −

∫
∆2

(x+ 1)
[
(ux + uy)

2 − ru2
]
dx ≥ 0,

where on ∆2 : y = x+2, or dy = dx : ν1 = −ν2, and − (x+ 1) dx|∆2
= (x+ 1) ν2ds|∆2

> 0,
as well as

I∆′
2

=

∫
∆′

2

(x+ 1)
[
−ν1

(
u2
x + u2

y

)
+ 2ν2uxuy + ν1ru

2
]
ds

= −
∫

∆′
2

(x+ 1)
[(
u2
x + u2

y

)
dy + 2uxuydx− ru2dy

]
=

∫
∆′

2

(x+ 1)
[
(ux − uy)

2 − ru2
]
dx ≥ 0,

where on ∆′2 : y = −x−1, or dy = −dx : ν1 = ν2, and (x+ 1) dx|∆′
2

= − (x+ 1) ν2ds|∆′
2
>

0, as well as

I∆′
1

=

∫
∆′

1

(− (x+ 1))
[
(ux + uy)

2 − ru2
]
dx = 0;

and

I∆1 =

∫
∆1

(x+ 1)
[
(ux − uy)

2 − ru2
]
dx = 0 :
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u|∆1∪∆′
1

= 0 yields , ux = Nν1 ; uy = Nν2, N = normalizing factor implying:

(ux + uy) |∆′
1

= [(ν1 + ν2)N ] |∆′
1

=
[(

dy−dx
ds

)
N
]
|∆′

1
= 0, as on ∆′1 : y = x+ 3, or dy = dx,

and (ux − uy) |∆1
= [(ν1 − ν2)N ] |∆1

=
[(

dy+dx
ds

)
N
]
|∆1

= 0, as on ∆1 : y = −x −
2, or dy = −dx; IA1O′

1
+IO′

1A1
= 0, because ν2|A1O′

1
= −ν2|O′

1A1
. Note that K = −1, M = 1

and b = x+ 1, c = 0 in G′′2 , as well as u = 0 on ∆1 ∪∆′1.

7. In the lower elliptic region: Ḡ′′′1 = G′′′1 ∪ ∂G′′′1 : 0 = JG′′′
1

= IG′′′
1

+ I∂G′′′
1

:

IG′′′
1

=−
∫∫
G′′′

1

(2r + (x+ 1) rx + yry)u2dxdy ≥ 0;

I∂G′′′
1

=

∫
Γ′′′
0

((x+ 1) ν1 + yν2)
(
ν2

1 + ν2
2

)
N2ds

+ 2

∫
E2O′

2

yν1uxuyds+ 2

∫
O′

2A2

(x+ 1) ν2uxuyds;

u|Γ′′′
0

= 0 yields ux = Nν1 ; uy = Nν2, N = normalizing factor, implying:

Q3 = Q3 (ux, uy) :

= ((x+ 1) ν1 − yν2)
(
u2
x − u2

y

)
+ 2 ((x+ 1) ν2 + yν1)uxuy

= ((x+ 1) ν1 + yν2)
(
ν2

1 + ν2
2

)
N2 > 0;

IA2O′
2

+ IO′
2A2

= 0, because ν2|A2O′
2

= −ν2|O′
2A2

.

Note that K = M = 1 and b = x+ 1, c = y in G′′′1 , as well as u = 0 on Γ′′′0 .

8. In the lower hyperbolic region: Ḡ′′′2 = G′′′2 ∪ ∂G′′′2 : 0 = JG′′′
2

= IG′′′
2

+ I∂G′′′
2

:

IG′′′
2

=

∫∫
G′′′

2

[
u2
x + u2

y − (r + yry)u2
]
dxdy ≥ 0;

I∂G′′′
2

=

∫
δ′2

y
[
(ux − uy)

2 − ru2
]
dx+

∫
δ2

y
[
(ux + uy)

2 − ru2
]
dx

+ 2

∫
Z2O2

yν1uxuyds+ 2

∫
O′

2E2

yν1uxuyds;

as

Iδ2 =

∫
δ2

y
[
−ν2

(
u2
x + u2

y

)
+ 2ν1uxuy + ν2ru

2
]
ds

=

∫
δ2

y
[(
u2
x + u2

y

)
dx+ 2uxuydy − ru2dx

]
=

∫
δ2

y
[
(ux + uy)

2 − ru2
]
dx ≥ 0,
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where on δ2 (: extension of Γ′1) : y = x, or dy = dx : ν1 = −ν2, and ydx|δ2 = −yν2ds|δ2 >
0, as well as

Iδ′2 =

∫
δ′2

y
[
−ν2

(
u2
x + u2

y

)
+ 2ν1uxuy + ν2ru

2
]
ds =

∫
δ′2

y
[(
u2
x + u2

y

)
dx+ 2uxuydy − ru2dx

]
=

∫
δ′2

y
[
(ux − uy)

2 − ru2
]
dx ≥ 0,

where on δ′2 (extension of ∆′2) : y = −x − 1, or dy = −dx : ν1 = ν2, and ydx|δ′2 =

−yν2ds|δ′2 > 0, as well as Iδ1 =
∫
δ1

y
[
(ux − uy)

2 − ru2
]
dx = 0;

and Iδ′1 =
∫
δ′1

y
[
(ux + uy)

2 − ru2
]
dx = 0 :

u|δ1∪δ′1 = 0 yields ux = Nν1 ; uy = Nν2, N = normalizing factor, implying: (ux + uy) |δ′1 =

[(ν1 + ν2)N ] |δ′1 =
[(

dy−dx
ds

)
N
]
|δ′1 = 0, as on δ′1 : y = x−1, or dy = dx, and (ux − uy) |δ1 =

[(ν1 − ν2)N ] |δ1 =
[(

dy+dx
ds

)
N
]
|δ1 = 0, as on δ1 : y = −x−2, or dy = −dx; IZ2O2 +IO2Z2 =

0, because ν1|Z2O2 = −ν1|O2Z2 . IE2O′
2

+ IO′
2E2

= 0, because ν1|E2O′
2

= −ν1|O′
2E2

. Note :
K = 1, M = −1 and b = 0, c = y in G′′′2 , and u = 0 on δ1 ∪ δ′1. On the eight parabolic
segments, the following ”vanishing” relation holds:

(IO1B1
+ IB1O1

) + (IO2B2
+ IB2O2

) + (IO1Z1
+ IZ1O1

)

+ (IO2Z2
+ IZ2O2

) +
(
IO′

1A1
+ IA1O′

1

)
+
(
IO′

2A2
+ IA2O′

2

)
+
(
IO′

1E1
+ IE1O′

1

)
+
(
IO′

1E2
+ IE2O′

2

)
= 0.

Also on the four pairs of characteristics: Γ2,Γ
′
2 ; γ2, γ

′
2 ; ∆1,∆

′
1 ; δ1, δ

′
1 :(

IΓ2 + IΓ′
2

)
+
(
Iγ2 + Iγ′

2

)
+
(
I∆1

+ I∆′
1

)
+
(
Iδ1 + Iδ′1

)
= 0.

Applying the energy integral method in each of the eight regions:
Gi , G

′
i , G

′′
i , G

′′′
i , i = 1, 2, separately, due to the discontinuity of

K =

 +1 for {y < 0} ∪ {y > 1}
0 for {y = 0} ∪ {y = 1}
−1 for {0 < y < 1}

; M =

 +1 for {x < −1} ∪ {x > 0}
0 for {x = 0} ∪ {x = −1}
−1 for {−1 < x < 0}

,

in D, Green’s theorem cannot be applied directly in the whole mixed domain D, and then
adding all the pertinent integral expressions, we find 0 = JD = ID + I∂D ≥ 0, where ID ≥
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0 ; I∂D ≥ 0. In fact,

ID =−
∫∫
G1

(2r + xrx + (y − 1) ry)u2dxdy −
∫∫
G′

1

(2r + xrx + yry)u2dxdy

−
∫∫
G′′

1

(2r + (x+ 1) rx + (y − 1) ry)u2dxdy

−
∫∫
G′′′

1

(2r + (x+ 1) rx + yry)u2dxdy +

∫∫
G2∪G′

2∪G′′
2∪G′′′

2

(
u2
x + u2

y

)
dxdy

−
∫∫
G2

(r + xrx)u2dxdy −
∫∫
G′

2

(r + (y − 1) ry)u2dxdy

−
∫∫
G′′

2

(r + (x+ 1) rx)u2dxdy −
∫∫
G′′′

2

(r + yry)u2dxdy ≥ 0.

Also

I∂D =

∫
Γ0

(xν1 + (y − 1) ν2)
(
ν2

1 + ν2
2

)
N2ds+

∫
Γ′
0

(xν1 + yν2)
(
ν2

1 + ν2
2

)
N2ds

+

∫
Γ′′
0

((x+ 1) ν1 + (y − 1) ν2)
(
ν2

1 + ν2
2

)
N2ds

+

∫
Γ′′′
0

((x+ 1) ν1 + yν2)
(
ν2

1 + ν2
2

)
N2ds+

∫
Γ1

x
[
(ux − uy)

2 − ru2
]
dx

−
∫
Γ′
1

x
[
(ux + uy)

2 − ru2
]
dx+

∫
γ1

(y − 1)
[
(ux − uy)

2 − ru2
]
dx

+

∫
γ′
1

(y − 1)
[
(ux + uy)

2 − ru2
]
dx−

∫
∆2

(x+ 1)
[
(ux + uy)

2 − ru2
]
dx

+

∫
∆′

2

(x+ 1)
[
(ux − uy)

2 − ru2
]
dx+

∫
δ2

y
[
(ux + uy)

2 − ru2
]
dx

+

∫
δ′2

y
[
(ux − uy)

2 − ru2
]
dx ≥ 0.

From the maximum principle and the uniqueness of the solution of the Cauchy problem on
hyperbolic equations, one obtains u = u(x, y) ≡ 0, everywhere in the whole mixed domain
D, completing the proof of our uniqueness theorem. In fact, from the maximum principle,
u|Ḡ2∪Ḡ′

2∪Ḡ′′
2∪Ḡ′′′

2
= 0, implies that u|Ḡ1∪Ḡ′

1∪Ḡ′′
1∪Ḡ′′′

1
= 0.

q.e.d.
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3 Exterior Bitsadze-Lavrentjev problem: Frankl Case

Consider the general Bitsadze-Lavrentjev quaterelliptic - quaterhyperbolic equation (1.2) with eight
parabolic lines of degeneracy in a bounded doubly connected mixed domain D̃ with a piecewise
smooth boundary

∂D̃ = Ext
(
D̃
)
∪ Int

(
D̃
)

=
[
ExtEl

(
D̃
)
∪ ExtHn

(
D̃
)]
∪ Int

(
D̃
)
,

where D̃ is a part of D, and Int
(
D̃
)

= Int (D) , as well as

ExtEl
(
D̃
)

= Γ0 ∪ Γ′0 ∪ Γ′′0 ∪ Γ′′′0 ,

is the elliptic exterior boundary of D̃ and

ExtHn
(
D̃
)

=
(

Γ̃2 ∪ Γ̃′2

)
∪ (γ̃2 ∪ γ̃′2) ∪

(
∆̃1 ∪ ∆̃′1

)
∪
(
δ̃1 ∪ δ̃′1

)
,

is the non-characteristic hyperbolic exterior boundary of D̃, such that:

Ext
(
D̃
)

=ExtEl
(
D̃
)
∪ ExtHn

(
D̃
)

= (Γ0 ∪ Γ′0 ∪ Γ′′0 ∪ Γ′′′0 )

∪
[(

Γ̃2 ∪ Γ̃′2

)
∪ (γ̃2 ∪ γ̃′2) ∪

(
∆̃1 ∪ ∆̃′1

)
∪
(
δ̃1 ∪ δ̃′1

)]
,

is the exterior boundary of D̃, with the following non-characteristics
Γ̃2, Γ̃′2, γ̃2, γ̃

′
2, ∆̃1, ∆̃′1, δ̃1, δ̃

′
1 :

Γ̃2 :
√
M (x)dx ≥

√
−K (y)dy > 0; ∆̃′1 :

√
M (x)dx ≤

√
−K (y)dy < 0;

Γ̃′2 :
√
M (x)dx ≤ −

√
−K (y)dy ≤ 0; ∆̃1 :

√
M (x)dx ≥ −

√
−K (−y)dy > 0;

γ̃2 : 0 ≥
√
−M (x)dx ≥

√
K (y)dy; δ̃′1 : 0 ≤

√
−M (x)dx ≤

√
K (y)dy;

γ̃′2 : 0 ≥
√
−M (x)dx ≥ −

√
K (y)dy; δ̃1 : 0 ≤

√
−M (x)dx ≤ −

√
K (y)dy,

or

Γ̃2 ∪ ∆̃′1 : 0 ≤ dy

dx

(
=

ν1

−ν2

)
≤
√
M (x)√
−K (y)

; Γ̃′2 ∪ ∆̃1 : 0 ≥ dy

dx
≥ −

√
M (x)√
−K (y)

;

γ̃2 ∪ δ̃′1 :
dy

dx
≥
√
−M (x)√
K (y)

; γ̃′2 ∪ δ̃1 :
dy

dx
≤ −

√
−M (x)√
K (y)

,

satisfying the non-characteristic relation K (y) (dy)
2

+M (x) (dx)
2
> 0, and intersecting character-

istics Γ1, Γ′1, γ1, γ
′
1, ∆2, ∆′2, δ2, δ

′
2, only once. Let us consider the intersection points of the

hyperbolic characteristics: Γ̃2∩ Γ̃′2 =
{

P̃2

}
, where P̃2 = (x̃2, 1/2) , 1 < x̃2 < 3/2; ∆̃1∩∆̃′1 =

{
P̃′1

}
,

where P̃′1 = (x̃′1, 1/2) ,−5/2 < x̃′1 < −2; γ̃2 ∩ γ̃′2 =
{
Q̃2

}
, where Q̃2 = (−1/2, ỹ2) , 2 < ỹ2 < 5/2;
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δ̃1 ∩ δ̃′1 =
{
Q̃′1

}
where Q̃′1 = (−1/2, ỹ′1) ,−3/2 < ỹ′1 < −1. Let the right hyperbolic domain

G̃2 ⊂ G2 = {(x, y) ∈ D : 0 < x < 2, 0 < y < 1} with boundary

∂G̃2 = (O1B1) ∪ (O2B2) ∪ (Γ1 ∪ Γ′1) ∪
(

Γ̃2 ∪ Γ̃′2

)
.

Let the upper hyperbolic domain G̃′2 ⊂ G′2 = {(x, y) ∈ D : −1 < x < 0, 1 < y < 3} with boundary

∂G̃′2 = (O1Z1) ∪ (O′1E1) ∪ (γ1 ∪ γ′1) ∪ (γ̃2 ∪ γ̃′2) .

Let the left hyperbolic domain G̃′′2 ⊂ G′′2 = {(x, y) ∈ D : −3 < x < −1, 0 < y < 1} with boundary

∂G̃′′2 = (O′1A1) ∪ (O′2A2) ∪
(

∆̃1 ∪ ∆̃′1

)
∪ (∆2 ∪∆′2) .

Let the lower hyperbolic domain G̃′′′2 ⊂ G′′′2 = {(x, y) ∈ D : −1 < x < 0,−2 < y < 0} with boundary

∂G̃′′′2 = (O2Z2) ∪ (O′2E2) ∪
(
δ̃1 ∪ δ̃′1

)
∪ (δ2 ∪ δ′2) .

Assume boundary conditions on the above exterior boundary Ext
(
D̃
)

:

u =



ϕ1 (s) on Γ0 ; ϕ2 (s) on Γ′0
ϕ3 (s) on Γ′′0 ; ϕ4 (s) on Γ′′′0
ψ̃1 (x) on Γ̃2 ; ψ̃2 (x) on Γ̃′2
ψ̃3 (x) on γ̃2 ; ψ̃4 (x) on γ̃′2
ψ̃5 (x) on ∆̃1 ; ψ̃6 (x) on ∆̃′1
ψ̃7 (x) on δ̃1 ; ψ̃8 (x) on δ̃′1

(3.1)

with continuous prescribed values.

The exterior Bitsadze-Lavrentjev problem: Frankl Case or Problem (BL-F):

consists of finding a solution u of the quaterelliptic -quaterhyperbolic equation (1.2) with eight
parabolic lines in D̃ (⊂ D) and which assumes continuous prescribed values (3.1).

Theorem 3.1. (UNIQUENESS THEOREM): Consider the quaterelliptic - quaterhyperbolic equa-
tion (1.2) with eight parabolic lines and the boundary condition (3.1). Assume the above mixed
doubly connected domain D̃ (⊂ D) and the following conditions:

(R1) r ≤ 0 on the interior boundary Int
(
D̃
)

(= Int (D)) ,

(R2)

{
xdy − (y − 1) dx ≥ 0 on Γ0 ; xdy − ydx ≥ 0 on Γ′0

(x+ 1) dy − (y − 1) dx ≥ 0 on Γ′′0 ; (x+ 1) dy − ydx ≥ 0 on Γ′′′0
,

(R3)


2r + xrx + (y − 1) ry ≤ 0 in G1 ; r + xrx ≤ 0 in G̃2

2r + xrx + yry ≤ 0 in G′1 ; r + (y − 1) ry ≤ 0 in G̃′2
2r + (x+ 1) rx + (y − 1) ry ≤ 0 in G′′1 ; r + (x+ 1) rx ≤ 0 in G̃′′2

2r + (x+ 1) rx + yry ≤ 0 in G′′′1 ; r + yry ≤ 0 in G̃′′′2

,

(R4) K = M = +1 , in G1 ∪G′1 ∪G′′1 ∪G′′′1 ,
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(R5)

{
K = −1 , M = +1 in G̃2 ∪ G̃′′2
K = +1 , M = −1 in G̃′2 ∪ G̃′′′2

.

Let ()x = ∂ ()/∂x, ()
•

= d ()/dx, ()y = ∂ ()/∂y, ()
′

= d ()/dy, where f = f(x, y) is continuous

in D̃ (⊂ D) , r = r(x, y) is once-continuously differentiable in D̃ (⊂ D) , K = K(y)) := sgn(y(y −
1)|k(y)|) is a discontinuous function of y, for y ∈ [−k1, k2] : −k1 = inf{y : (x, y) ∈ D̃ (⊂ D)}
and k2 = sup{y : (x, y) ∈ D̃ (⊂ D)}, and M = M(x) := sgn(x(x + 1)|m(x)|) is discontinuous for
x ∈ [−m1,m2] : −m1 = inf{x : (x, y) ∈ D̃ (⊂ D)} and m2 = sup{x : (x, y) ∈ D̃ (⊂ D)}, such that
k = k(y) 6= 0 ; m = m(x) 6= 0, everywhere in D, as well as

K =

 +1 for {y < 0} ∪ {y > 1}
0 for {y = 0} ∪ {y = 1}
−1 for {0 < y < 1}

; M =

 +1 for {x < −1} ∪ {x > 0}
0 for {x = 0} ∪ {x = −1}
−1 for {−1 < x < 0}

.

Then Problem (BL-F) has at most one quasi-regular solution in D̃ (⊂ D) .

Proof. We apply the well-known energy integral method , and employ the above Bitsadze-Lavrentjev
equation (1.2) and boundary condition (3.1). First, we assume two quasi-regular solutions u1, u2 of
Problem (BL-F). Then we claim that u = u1 − u2 = 0 holds in the domain D̃ (⊂ D) .
In fact, we investigate

0 = J̃ = 2
〈
l̃u, Lu

〉
0

=

∫∫
D

2l̃uLudxdy,

where l̃u = b̃ (x)ux + c̃ (y)uy, and Lu = L(u1 − u2) = Lu1 − Lu2 = f − f = 0 in D̃ (⊂ D) , with
choices

b̃ = b̃ (x) =


x in G1 ∪G′1 ∪ G̃2

x+ 1 in G′′1 ∪G′′′1 ∪ G̃′′2
0 in G̃′2 ∪ G̃′′′2

,

and

c̃ = c̃ (y) =


y in G′1 ∪G′′′1 ∪ G̃′′′2

y − 1 in G1 ∪G′′1 ∪ G̃′2
0 in G̃2 ∪ G̃′′2

.

The rest of the proof is similar to the proof of the uniqueness theorem 2.2. q.e.d.

For the exterior Tricomi problem, except clearly proving in additional that the following condi-
tion holds on the non-characteristic hyperbolic exterior boundary

ExtHn
(
D̃
)

=
(

Γ̃2 ∪ Γ̃′2

)
∪ (γ̃2 ∪ γ̃′2) ∪

(
∆̃1 ∪ ∆̃′1

)
∪
(
δ̃1 ∪ δ̃′1

)
:

0 < b̃ν1 + c̃ν2 =


xν1 on Γ̃2 ∪ Γ̃′2

(y − 1) ν2 on γ̃2 ∪ γ̃′2
(x+ 1) ν1 on ∆̃1 ∪ ∆̃′1

yν2 on δ̃1 ∪ δ̃′1

.
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We note that 0 = JD̃ = ID̃ + I∂D̃ ; ID̃ ≥ 0 ; I∂D̃ ≥ 0. In fact,

ID̃ =−
∫∫
G1

(2r + xrx + (y − 1) ry)u2dxdy −
∫∫
G′

1

(2r + xrx + yry)u2dxdy

−
∫∫
G′′

1

(2r + (x+ 1) rx + (y − 1) ry)u2dxdy

−
∫∫
G′′′

1

(2r + (x+ 1) rx + yry)u2dxdy +

∫∫
G̃2∪G̃′

2∪G̃′′
2∪G̃′′′

2

(
u2
x + u2

y

)
dxdy

−
∫∫
G̃2

(r + xrx)u2dxdy −
∫∫
G̃′

2

(r + (y − 1) ry)u2dxdy

−
∫∫
G̃′′

2

(r + (x+ 1) rx)u2dxdy −
∫∫
G̃′′′

2

(r + yry)u2dxdy ≥ 0.

Also

I∂D̃ =I∂D +
[(
IΓ̃2

+ IΓ̃′
2

)
+
(
Iγ̃2 + Iγ̃′

2

)
+
(
I∆̃1

+ I∆̃′
1

)
+
(
Iδ̃1 + Iδ̃′1

)]
=

∫
Γ0

(xν1 + (y − 1) ν2)
(
ν2

1 + ν2
2

)
N2ds

+

∫
Γ′
0

(xν1 + yν2)
(
ν2

1 + ν2
2

)
N2ds+

∫
Γ′′
0

((x+ 1) ν1 + (y − 1) ν2)
(
ν2

1 + ν2
2

)
N2ds

+

∫
Γ′′′
0

((x+ 1) ν1 + yν2)
(
ν2

1 + ν2
2

)
N2ds+

∫
Γ1

x
[
(ux − uy)

2 − ru2
]
dx

−
∫
Γ′
1

x
[
(ux + uy)

2 − ru2
]
dx+

∫
γ1

(y − 1)
[
(ux − uy)

2 − ru2
]
dx
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+

∫
γ′
1

(y − 1)
[
(ux + uy)

2 − ru2
]
dx−

∫
∆2

(x+ 1)
[
(ux + uy)

2 − ru2
]
dx

+

∫
∆′

2

(x+ 1)
[
(ux − uy)

2 − ru2
]
dx+

∫
δ2

y
[
(ux + uy)

2 − ru2
]
dx

+

∫
δ′2

y
[
(ux − uy)

2 − ru2
]
dx +

∫
Γ̃2∪Γ̃′

2

xν1

(
−ν2

1 + ν2
2

)
N2ds

+

∫
γ̃2∪γ̃′

2

(y − 1) ν2

(
ν2

1 − ν2
2

)
N2ds+

∫
∆̃1∪∆̃′

1

(x+ 1) ν1

(
−ν2

1 + ν2
2

)
N2ds

+

∫
δ̃1∪δ̃′1

yν2

(
ν2

1 − ν2
2

)
N2ds ≥ 0,

because of the following conditions:

xν1|Γ̃2∪Γ̃′
2
≥ 0 ; (y − 1) ν2|γ̃2∪γ̃′

2
≥ 0 ; (x+ 1) ν1|∆̃1∪∆̃′

1
≥ 0 ; yν2|δ̃1∪δ̃′1 ≥ 0,

as well as: (
−ν2

1 + ν2
2

)
|(Γ̃2∪Γ̃′

2) ∪ (∆̃1∪∆̃′
1)
≥ 0 ;

(
ν2

1 − ν2
2

)
|(γ̃2∪γ̃′

2) ∪ (δ̃1∪δ̃′1)
≥ 0.

We note that Γ2 has an analogous equation as Γ′1, because Γ2 is parallel to Γ′1.
On the non-characteristic Γ̃2 : u = 0, one obtains

IΓ̃2
= −

∫
Γ̃2

x
[(
u2
x + u2

y

)
dy + 2uxuydx− ru2dy

]
≥ 0,

as due to u|Γ̃2
= 0 : ux = ν1N , uy = ν2N, N = normalizing factor, such that(

u2
x + u2

y

)
dy + 2uxuydx− ru2dy =

[(
ν2

1 + ν2
2

)
ν1 + 2ν1ν2 (−ν2)− r.0

]
N2ds

=− ν1

(
−ν2

1 + ν2
2

)
N2ds ≥ 0,

−ν2
1 + ν2

2 =− (dy/ds)
2

+ (−dx/ds)2
= (dx− dy) (dx+ dy) / (ds)

2 ≥ 0,

where 0 < dy ≤ dx on Γ̃2, and ν1|Γ̃2
< 0.

Similarly on the following non-characteristics: Γ̃′2, ∆̃1, ∆̃
′
1 : u = 0,

where xν1|Γ̃2∪Γ̃′
2
≥ 0 ; (x+ 1) ν1|∆̃1∪∆̃′

1
≥ 0 ,

as well as:
(
−ν2

1 + ν2
2

)
|(Γ̃2∪Γ̃′

2) ∪ (∆̃1∪∆̃′
1)
≥ 0 .

On the other hand, on the non-characteristic γ̃2 : u = 0, we find

Iγ̃2 =

∫
γ̃2

(y − 1)
[(
u2
x + u2

y

)
dx+ 2uxuydy − ru2dx

]
≥ 0,
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as due to u|γ̃2 = 0 : ux = ν1N , uy = ν2N, N = normalizingfactor, such that(
u2
x + u2

y

)
dx+ 2uxuydy − ru2dx =

[(
ν2

1 + ν2
2

)
(−ν2) + 2ν1ν2 (ν1)− r.0

]
N2ds

=ν2

(
ν2

1 − ν2
2

)
N2ds ≥ 0,

ν2
1 − ν2

2 = (dy/ds)
2 − (−dx/ds)2

= (dy − dx) (dy + dx) / (ds)
2 ≥ 0,

where dy ≤ dx < 0 on γ̃2, and ν2|γ̃2 > 0.

Similarly on the following non-characteristics: γ̃′2 , δ̃1 , δ̃′1 : u = 0,
where (y − 1) ν2|γ̃2∪γ̃′

2
≥ 0 ; yν2|δ̃1∪δ̃′1 ≥ 0,

as well as:
(
ν2

1 − ν2
2

)
|(γ̃2∪γ̃′

2) ∪ (δ̃1∪δ̃′1)
≥ 0.

4 Open problems

4.1. Extend ”quasi-regularity” of solutions to ”regularity” by fixing singularities at the following
twelve ”singular” points:

O1 = (0, 1) , O′1 = (−1, 1) , O2 = (0, 0) , O′2 = (−1, 0) ;

A1 = (−3, 1) , B1 = (2, 1) , A2 = (−3, 0) , B2 = (2, 0) ;

E1 = (−1, 3) , Z1 = (0, 3) , E2 = (−1,−2) , Z2 = (0,−2) .

Then find the formula for these regular solutions.

4.2. Investigate the exterior Bitsadze-Lavrentjev problem in a multiply connected mixed domain.

4.3. Establish ”well-posedness” of solutions for the 3D exterior Bitsadze-Lavrentjev problem , in
the sense that there is at most one quasi-regular solution and a weak solution exists.

4.4. Solve the n - dimensional Bitsadze-Lavrentjev problem in a multiply connected mixed domain.

4.5. Establish the extremum principle for the exterior Bitsadze-Lavrentjev problem : ”A solution
of the exterior Bitsadze-Lavrentjev problem , vanishing on the exterior boundary of the con-
sidered mixed domain, achieves neither a positive maximum nor a negative minimum on open
arcs of the type-degeneracy curves.”

4.6. Solve the Bitsadze-Lavrentjev problem for Partial Differential Equations of second order:

4.6.1. sgn
(
x2 + y2 − 1

)
uxx + uyy + r(x, y)u = f(x, y);

4.6.2. sgn
(
y3 − y

)
uxx + sgn

(
x3 − x

)
uyy + r(x, y)u = f(x, y);

4.6.3. sgn
(
x2/3 + y2/3 − 1

)
uxx + uyy + r (x, y)u = f (x, y) ;

4.6.4. sgn ((y − xm) (y − xn))uxx + uyy + r (x, y)u = f (x, y) ;

4.6.5. sgn (y − xn)uxx + sgn (x− ym)uyy + r (x, y)u = f (x, y) ;

4.6.6. sgn
(
yk − xm ± xn

)
uxx + sgn

(
xk − ym ± yn

)
uyy + r (x, y)u = f (x, y) ;

4.6.7. sgn (ym (y − xn))uxx + sgn (xm (x− yn))uyy + r (x, y)u = f (x, y) ;

4.6.8. sgn ((y − xm) (y − xn))uxx + sgn
(
(x− yα)

(
x− yβ

))
uyy + ru = f (x, y) .
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4.7. Solve the Bitsadze-Lavrentjev problem for PDE of fourth order:(
sgn

(
y − xl

) ∂2

∂x2
+ sgn (x− yn)

∂2

∂y2
+ r

)2

u = f.

4.8. Solve the 3 - dimensional Bitsadze-Lavrentjev problem for mixed type PDE of second order:

sgn (z) (uxx ± uyy) + sgn (xy)uzz + ru = f.

Acknowledgment: I greatly thank Dr. M. Arunkumar for the LaTEX typing of this long research
paper.
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